Robust detection of moving objects in video sequences through rough set theory framework

نویسندگان

  • Pojala Chiranjeevi
  • Somnath Sengupta
چکیده

a r t i c l e i n f o Keywords: Background subtraction Rough set 3D histon 3D fuzzy histon 3D HRI 3D FHRI Detection of moving objects in the presence of challenging background situations like swaying vegetation, rippling water, camera jitter etc., is known to be a difficult task. Background subtraction is considered to be better than the other approaches in terms of robustness. Its success primarily depends on the proper choice of background model(s) associated with every pixel for its foreground/background labeling. In this work, we have adopted rough-set theoretic measures to embed the spatial similarity around a neighborhood as a model for the pixel. Basic histon and its associated measure Basic Histon Roughness Index (BHRI) have been reported in the literature. It was applied to still image segmentation with impressive performance. Its adoption in video sequences for foreground/background labeling is proposed herein. We extended the histon concept to a 3D histon, which considers the intensities across the color planes in a combined manner, instead of considering independent color planes. Further, we also incorporated fuzziness into the 3D HRI measure. The labeling decision is based on Bhattacharyya distance between the model HRI and the corresponding measure in the current frame. Adoption of rough set theoretic concept into moving object segmentation is nontrivial, as the model updating requires careful consideration so that the pixels associated with gradually changing background or dynamic background are labeled as background and at the same time, slow moving objects are never adopted into the background model. A novel background model update strategy proposed herein takes these into consideration and also eliminates the need of having exclusive ideal background frame initially. Research on visual surveillance is gaining momentum due to security requirements in sensitive areas such as airport, offices, railway stations, etc. Moving object detection is the fundamental step in many visual surveillance applications like object tracking, action recognition , high level semantic description, gesture recognition, etc. Out of three major classes of moving object detection techniques, namely, image differencing, optical flow and background subtraction, the last is considered to be somewhat robust, as compared to the others. Background subtraction approaches rely on constructing a background model, and detect moving objects as those that deviate from the background model, under the assumption of static camera. These approaches work for slow moving objects unlike temporal differencing, and are less noisy and simpler than optical flow. …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)

Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...

متن کامل

Corrections to 'Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects'

ÐThis paper presents a new variational framework for detecting and tracking multiple moving objects in image sequences. Motion detection is performed using a statistical framework for which the observed interframe difference density function is approximated using a mixture model. This model is composed of two components, namely, the static (background) and the mobile (moving objects) one. Both ...

متن کامل

Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects

ÐThis paper presents a new variational framework for detecting and tracking multiple moving objects in image sequences. Motion detection is performed using a statistical framework for which the observed interframe difference density function is approximated using a mixture model. This model is composed of two components, namely, the static (background) and the mobile (moving objects) one. Both ...

متن کامل

Statistical Background Modeling Based on Velocity and Orientation of Moving Objects

Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2012